
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
A PROGRAM MANAGER'S GUIDE FOR SOFTWARE

COST ESTIMATING

by

Andrew L. Dobbs

December 2002

 Thesis Advisor: Brad Naegle
 Second Reader: Latika Becker

Approved for public release, distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
A Program Manager's Guide for Software Cost Estimating
6. AUTHOR(S)

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release, distribution is unlimited

12b. DISTRIBUTION CODE
 A

13. ABSTRACT (maximum 200 words)
This thesis will assist current and future program managers by outlining a process to

ensure the software cost estimates developed for a system will be credible and supportable
throughout the life of the program. This thesis also identifies many of the problems associated
with software cost estimating and recommends potential solutions.

One of the critical parameters for estimating software cost is the quantity of source lines
of code (SLOC) required in the program. Therefore, this thesis examines the software cost
implications of improperly estimating SLOC and function points. Some of the other
parameters required to estimate the software cost include language, functionality, application,
software processes maturity, programmer skill level, design and reuse, productivity factors,
complexity, utilization and schedules. Many of these parameters overlap. For example, both
the complexity of the code and skill level of the programmer directly impacts the productivity
and schedule of the program.

This thesis provides a broad view of the software cost estimating process. In the
reference and appendix section, a list of valuable resources including commercial estimating
models is provided for further assistance.

15. NUMBER OF
PAGES 79

14. SUBJECT TERMS Software Cost Estimating, Software Development, Metrics, Source Lines of
Code,

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited

A PROGRAM MANAGER'S GUIDE FOR
SOFTWARE COST ESTIMATING

Andrew L. Dobbs

GS-13, Department of the Army
B.S., Athens State College, 1990

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN PROGRAM MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
December 2002

Author: Andrew L. Dobbs

Approved by: Brad Naegle

Principle Advisor

Latika Becker, Ph.D.

 Associate Advisor

Douglas A. Brook, Ph.D.
Dean, Graduate School of Business & Public Policy

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

This thesis will assist current and future program managers by outlining a process

to ensure the software cost estimates developed for a system will be credible and

supportable throughout the life of the program. This thesis also identifies many of the

problems associated with software cost estimating and recommends potential solutions.

One of the critical parameters for estimating software cost is the quantity of

source lines of code (SLOC) required in the program. Therefore, this thesis examines the

software cost implications of improperly estimating SLOC and function points. Some of

the other parameters required to estimate the software cost include language,

functionality, application, software processes maturity, programmer skill level, design

and reuse, productivity factors, complexity, utilization and schedules. Many of these

parameters overlap. For example, both the complexity of the code and skill level of the

programmer directly impacts the productivity and schedule of the program.

This thesis provides a broad view of the software cost estimating process. In the

reference and appendix section, a list of valuable resources, including commercial

estimating models, is provided for further assistance.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PURPOSE...1
B. BACKGROUND ..3
C. SCOPE ..3
D. RESEARCH QUESTIONS...3

1. Primary Research Question..3
2. Secondary Research Questions...4

E. METHODOLOGY ..4
F. ORGANIZATION ...4
G. BENEFITS OF THE ANALYSIS...4

II. METHODOLOGIES, MODELS AND PROCESSESS ...5
A. PRIMARY SOFTWARE DEVELOPMENT METHODOLGIES5

1. Waterfall/Traditional ..6
2. Evolutionary Development..7
3. Incremental Development ...7
4. Prototyping Development..9
5. Spiral Development..10
6. Object-Oriented Development..10

B. PRIMARY METHODS TO ESTIMATE SOFTWARE COSTS..............12
1. Analogy ...12
2. Parametric Estimating...13
3. Bottoms-up Approach ...14
4. Engineering Judgment...15

C. SOFTWARE COST ESTIMATE PROCESS ...16
1. Design Baseline...17
2. Software Size ..18
3. Environmental Inputs..20
4. Software Baseline Cost Estimate ..24

D. SOFTWARE COST ESTIMATING MODELS ...24

III. DATA TO BE ANALYZED..27
A. REQUIREMENTS...28

1. Interviews..28
2. Program Data ...30

B. SCHEDULE..30
1. Interviews..30
2. Program Data ...30

C. PROGRAM PLANNING ..31
1. Interviews..31
2. Program Data ...31

D. SOFTWARE MAINTAINANCE AND SUPPORTABILITY...................32

 vii

1. Interviews..32
2. Program Data ...32

E. DATA SUMMARY..32

IV. ANALYSIS OF DATA ..35
A. REQUIREMENTS ANALYSIS ...35

1. Requirements Definition ...35
2. SLOC and Function Points Estimates..35
3. Advanced Technology Impact ..35
4. User Involvement ...36
5. Requirements Development Framework...36
6. Budget Cuts and Politics ...36
7. Improper Assumptions..36

B. SCHEDULE REALISM..36
1. Unrealistic Schedules ...36
2. Exaggerated Productivity Rates ...37
3. Backing into Schedules ..37

C. INITIAL PROGRAMMING PLANNING..37
1. Poor Planning and Processes ..37
2. Staffing and Training Problems ...38
3. Reuse and COTS..38

D. SOFTWARE MAINTENACNE AND SUPPORTABILITY.....................38
1. Initial Unstable Requirements ..38
2. Initial Design...38
3. Testing Requirements..39

E. DATA ANALYSIS SUMMARY...39

V. CONCLUSIONS AND RECOMMENDATIONS...41
A. REQUIREMENTS ANALYSIS STABILITY...41
B. SCHEDULE REALISM..42
C. PROGRAMMING AND PLANNING ...45
D. SOFTWARE MAINTAINABLITY AND SUPPORTABILITY...............47
E. SUMMARY ..49
F. RECOMMENDATIONS FOR FURTHER ANALYSIS49
G. VALAUBLE RESOUCES...49

APPENDIX A. INDIVIDUALS INTERVIEWED ..51

APPENDIX B. SOFTWARE COST ESTIMATING MODEL WEBSITES..........53

LIST OF REFERENCES..55

INITIAL DISTRIBUTION LIST ...59

 viii

LIST OF FIGURES

Figure 1. Software Cost Estimation Accuracy Versus Phase [From: Ref. 3]2
Figure 2. Software Language Translation Process [From: Ref. 7]....................................6
Figure 3. Software Waterfall Model Development [From: Ref. 9]...................................8
Figure 4. Evolutionary Model With User Involvement [From: Ref. 9]9
Figure 5. Incremental Software Development [From: Ref. 9] ..9
Figure 6. Spiral Development Methodology [From: Ref. 9]...11
Figure 7. Object-Oriented Inheritance From Class To Object [From: Ref.10]12
Figure 8. Cost Estimating Relationship Development Process [From: Ref. 7]...............14
Figure 9. Normalization of Data [From: Ref. 7] ...15
Figure 10. "Bottoms Up" Software Estimating Process [From: Ref.11]...........................16
Figure 11. Example of Questionnaire to Industry [From: Ref.14]21
Figure 12. Support Cost for Data Processing Environments [After: Ref. 9]....................47

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

LIST OF TABLES

Table 1. Software Estimating Process Elements [After: Ref. 9]....................................18
Table 2. Definition Checklist for SLOC [After: Ref. 9] ..20
Table 3. Types of Environmental Factors [After: Ref. 15]..21
Table 4. REVIC Example of Programmer Capabilities [From: Ref. 15]22
Table 5. General Characteristics of Each Maturity Level of The CMM [From: Ref.

9]. ...23
Table 6. Software Risk Areas [After: Ref. 9] ..29
Table 7. Factors Where DoD Software Lags Behind Commercial Programs [After:

Ref.24] ..29
Table 8. Commercial Model Estimating Capabilities [After: Ref. 24]..........................43
Table 9. Example of Developers Years Experience [From: Ref. 27]44
Table 10. Software Productivity (SLOC/staff month) [After: Ref. 30]45
Table 11. Software Supportability Checklist [From: Ref. 9] ...48

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

ACRONYMS
ACAT Acquisition Category

CASE Computer Aided Software Engineering

CAIG Cost Analysis Improvement Group

CARD Cost Analysis Requirements Document

CER Cost Estimating Relationship

CMM Capability Maturity Model

COCOMO Constructive Cost Model

CSCI Computer Software Configuration Item

DoD Department of Defense

EIA Electronics Engineers Association

GUI Graphical User Interface

HOL Higher Order Language

ICE Independent Cost Estimate

IEEE/EIA Institute of Electrical

IPT Integrated Product Team

ISO International Organization for Standardization

LCCE Life Cycle Cost Estimate

MAIS Major Automated Information System

MDAP Major Defense Acquisition Program

ORD Operational Requirements Document

OSD Office of the Secretary of Defense

PC Personal Computer

REVIC Revised Intermediate Constructive Cost Model

RFP Request for Proposal

SA Software Acquisition

SEER System Evaluation and Estimation Resource

SEI Software Engineering Institute

SETA Systems Engineering Technical Assistance

SLIM Software Life Cycle Management

 xiii

SLOC Source Lines of Code

SU Software Unit

 xiv

ACKNOWLEDGMENTS

I would like to thank Professor Brad Naegle for his guidance and support during

the preparation of this thesis. His understanding of the software development process

was immensely helpful.

I would like to thank Dr. Latika Becker for agreeing to be my associate thesis

advisor. Her time, patience and professionalism were greatly appreciated.

I would like to thank Jack Calvert for being my mentor for the past 11 years. His

storehouse of data and expertise was helpful in preparing this thesis.

I would like to thank my supervisor, Richard Brown, for giving me the

opportunity to advance my career through education.

I would like to thank Gary and Beverly Fuller for their assistance and guidance.

I would also like to thank the following individuals for taking the time to provide

me with information.

Professor Dave Matthews

Jayson Wilson

Ken Shipman

Martha Spurlock

Randy Mills

Robbie Holcomb

Ed Strange

Jerome Olerich

Lastly, I would like to thank my wife, Debbie Dobbs, for being supportive of me

for the past two years. Her help in proofreading and editing this thesis was a tremendous

help.

 xv

THIS PAGE INTENTIONALLY LEFT BLANK

 xvi

EXECUTIVE SUMMARY

Historically, software costs estimates have consistently been underestimated. The

purpose of this thesis was to identify why these estimates were inaccurate. The methods

used to collect data involved interviews with cost analysts, program managers, and

educators. Then two data sources were used to validate the problems identified by the

professionals. Then, books, trade journals, briefs to industry, software manuals, and

Internet sources were used as part of the analysis. The thesis is a tool that can be used to

assist current and future program managers by outlining processes to ensure the software

cost estimates developed for a system will be credible and supportable throughout the life

of the program.

One of the critical parameters for estimating software cost is the quantity of

source lines of code (SLOC) required in the program. Therefore, this thesis examines the

how the various phases of the program can impact the accuracy of the SLOC estimates.

Some of the other parameters required to estimate the software cost include language,

functionality, application, software processes maturity, programmer skill level, design

and reuse, productivity factors, complexity, utilization and schedules. Many of these

parameters overlap. For example, both the complexity of the code and skill level of the

programmer directly impacts the productivity and schedule of the program.

This thesis identifies processes and plans that will improve the overall software

development and result in more accurate estimates. Chapter V includes valuable

resources for the program managers, and Appendix B includes a list of some of the more

current software cost estimating models.

 xvii

THIS PAGE INTENTIONALLY LEFT BLANK

 xviii

I. INTRODUCTION

A. PURPOSE
The purpose of this thesis is to educate program managers on software cost

estimating. Software cost can comprise as much as 90 percent of some programs.

[Ref.22] Therefore, understanding the software cost estimating process, and what drives

the cost, is vital for the program manager to successfully manage the program. Because

most program managers receive only a few weeks of formal education on the software

acquisition process, few fully understand the magnitude of developing a cost estimate.

The DoD schools recognize this problem and are currently adding and reviewing courses

that will improve the education of software acquisition managers. [Ref. 1]

The accuracy of the software cost estimate is directly related to how well the

program's software development is managed. Unfortunately, there is an alarming rate of

software development failures, as described in the next few paragraphs. In 1995, the

Standish Group, a firm that routinely conducts market and technology research for

Fortune 500 companies, government agencies and major universities, conducted a study

on the success and failure rates of software projects. The study sample size was 365

respondents and represented 8,380 software applications. Of these, only 16.2 percent of

the projects were completed on-time and on-budget; 52.7 percent were completed but

were over-budget, over the time estimate, and did not have full functionality; and the

remaining 31.1 percent were cancelled during the development cycle. [Ref. 2]

Another finding in the Standish study reported that 52.7 percent of the projects

cost 189 percent more than their original estimate. In addition to cost overruns, one third

of the projects also experienced time overruns by 200-300 percent. The primary reason

for these cost and schedule problems is that for every 100 projects, there were 94 restarts.

This thesis examines why there are so many restarts, and what if anything can be done to

reduce this trend.

Program uncertainties decrease as the development matures and advances through

the various phases, and as these uncertainties are decreased, ultimately cost estimates will

improve Figure 1. [Ref. 3] Many of the uncertainties can translate into project restarts.

1

Figure 1. Software Cost Estimation Accuracy Versus Phase [From: Ref. 3]

As a program manager, you may hear that some commercial models are

estimating software cost within 75-80 percent of the actual costs. Compared to the

Standish Group results, 75-80 percent of actual cost is very good. However, the

successes of these models are dependent upon how well the program is defined, and the

accuracy of the initial SLOC estimates.

The models are also improved through a process called calibration. Calibration of

the model involves inputting historical cost data of similar programs that the model will

use as a basis to estimate future cost. However, if the database does not include similar

projects, then the probability of the estimate falling within the 75-80 percent accuracy

range is unlikely.

This thesis outlines processes that will improve the probability of success for the

software intensive acquisition program. The result of following these processes should

ultimately improve the software cost estimate.

2

B. BACKGROUND

Until recently, the Department of Defense (DoD) 5000.2-R required every Major

Defense Acquisition Program (MDAP) and Major Automated Information System

(MAIS) program to prepare a Life Cycle Cost Estimate (LCCE) prior to each milestone

review. [Ref. 4] The Office of the Secretary of Defense (OSD) cancelled the DoD 5000

series on 30 October 2002, citing guidance that was overly prescriptive and that did not

represent an acquisition policy environment encouraging efficiency, creativity, and

innovation. [Ref. 5]

However, in order to provide guidance to the MDAPs and MAISs, the OSD

immediately released the Interim Defense Acquisition Guidebook. For all practical

purposes, the new guidebook is the same as the DoD 5000.2-R, and once again, requires

MDAPs and MAISs to continue preparing a LCCE. [Ref. 6] Whether it is required or

not, a program needs to have an estimate to track the progress of the project. The

estimate will also be useful in defending and justifying the continuation the program

The LCCE is a comprehensive cost estimate that includes all costs associated with

the program for its complete life cycle including both contractor and Government in-

house costs for program management support. The LCCE also includes, development,

test, training, deployment, operational and maintenance cost. Software related costs are

included throughout the life cycle process. [Ref. 6]

C. SCOPE
This thesis identifies and analyzes significant software development issues facing

program managers, and recommends potential solutions. This thesis also will examine

processes that will improve the initial design requirements that are required to effectively

estimate software cost.

D. RESEARCH QUESTIONS

1. Primary Research Question

What are the problems associated with software cost estimating and what

solutions are available to the program manager?

3

2. Secondary Research Questions

What are the primary metrics for estimating software costs?

How does software programming productivity impact schedule and cost?

What are software reuse considerations?

How do you estimate software maintenance and support cost?

What are the recommended models for estimating software costs?

E. METHODOLOGY
Thesis research involved telephone and face-to-face interviews with program

managers, software engineers, instructors, and cost analysts who had experience with

software acquisition. These individuals provided valuable insight into the software

acquisition process. Other material reviewed for this thesis includes software engineering

textbooks, professional journals, software cost model manuals, symposium briefings and

Internet-based software web sites.

F. ORGANIZATION
Chapter II familiarizes the reader with methodologies, models and process that are

required to prepare software cost estimates.

Chapter III presents the data, outlines the primary causes of inaccurate software

cost estimates and lays the foundation for analysis. Chapter IV analyzes the data and

recommends potential solutions to the estimating problems. Chapter V summarizes the

analysis and provides recommendations to improve the overall software cost estimating

process.

G. BENEFITS OF THE ANALYSIS

The analysis provides the program managers with insight into software cost

estimating that will result in more accurate cost estimates. By improving the program's

cost estimate, resources can be allocated to ensure the software project remains on

schedule, within budget, and delivered with the desired capabilities.

4

II. METHODOLOGIES, MODELS AND PROCESSESS

The next sections will provide background information helpful in software cost

estimating. It includes methodologies to develop software requirements, cost estimating

methods and processes, and definitions to key software terms.

A. PRIMARY SOFTWARE DEVELOPMENT METHODOLGIES
Software can be written in many languages. For example, Machine Language is

code written in 0's and 1's; Assembly Language is written in English and assembled into

Machine Language; Higher-Order Language (HOL) is similar to Assembly, but usually

easier to read and write (i.e., FORTRAN, COBOL, Basic, Ada, C++, and Java), and Very

High-Level languages, also called 4th Generation Language, are written to resemble the

spoken language that includes programs for spreadsheets, word processors and graphical

user interfaces (GUI). [Ref. 7]

On April 29 1997, DOD lifted a 1987 policy that required all military systems be

developed in Ada. The National Research Council reported that Ada (version 1995) was

superior over C, C++, and Java when applications required real-time processing, high-

assurance, and high-reliability for weapon systems. However, the report also noted that

Ada came in second behind COBOL for administration applications. [Ref. 8] Examples

of the various languages and a process required to go from the spoken language down to

the binary code required to execute the program is shown in Figure 2.

Regardless of the language used in the development, all software programs must

be developed through a systematic approach. One recommended approach is the Institute

of Electrical and Electronics Engineers/Electronic Industries Association’s (IEEE/EIA)

12207, "Standard for Information Technology--Software Life Cycle Processes" or

International Organization for Standardization (ISO) 12207. This approach is a generic

software process that recommends a set of development activities and documentation

alternatives for software intensive programs. [Ref. 7]

5

Figure 2. Software Language Translation Process [From: Ref. 7]

The ISO 12207 Primary life cycle process begins with: 1) acquisition process; 2)

supply process (providing software to the customer that meets the agreed requirements);

3) development process (includes system and software requirements analysis,

architectural and detailed software design, software coding and testing, software

integration, qualification testing, installation and acceptance); 4) operation process; and

5) maintenance process. This process is compatible with most of the leading software

development methodologies outlined below. The ISO 12207 primarily serves as a

checklist to ensure that all aspects of the software development are considered. The

methodology selected will have a significant impact on the development and maintenance

cost. [Ref. 7]

1. Waterfall/Traditional

The Waterfall methodology was developed in 1970 by W.W. Royce, and

considered to be the first formal disciplined approach for software development. [Ref. 3]

This methodology assumes that all the requirements are known up front and therefore a

6

complete design of the program can be achieved and the process of coding the software

can begin. Unfortunately, this methodology does not work well with the majority of

advanced technology programs. [Ref. 7]

For example, using this methodology may delay the delivery of a missile system

until all of the weapon capabilities are achieved. If a different development approach is

used, the missile could be delivered with limited capabilities at an earlier date. For

instance, the missile could be delivered immediately with the limited capability to destroy

fixed wing aircraft, even though the missile still lacks the capability to destroy

helicopters. The Army's Patriot missile system has been adding capabilities like this

example over the years using incremental software builds with tremendous success.

Another problem with the Waterfall methodology is that many of the errors in the

software will not be discovered until the end of the development. At this point,

correcting these errors will be time-consuming and costly. The Waterfall software

development process is shown in Figure 3. [Ref. 9]

2. Evolutionary Development

Evolutionary development begins the design process with only the core

capabilities and delivers an initial operational product. The next step in the process is to

add more functionality and refine the previous design. This process continues until the

program is complete. The advantages of this process are that it places a working product

in the hands of the user and allows them to provide input into future designs. The

disadvantage of the Evolutionary method is that it usually takes more time to complete

the project. The Evolutionary Development process with user involvement is shown in

Figure 4. [Ref. 7]

3. Incremental Development
Software is developed in a series of increments of increasing functional

capability. Like the Evolutionary methodology, the Incremental Development

methodology lets the user get involved early through a build-and-test process. The

Incremental approach is best suited when user requirements can be fully defined, or when

7

factors such as technical risks, funding instability, schedule uncertainties, or program size

warrant a phased approach. Other advantages to this methodology are a reduction in risk

and a firm foundation to meet the requirements of the remaining software builds/releases.

The primary disadvantage for this methodology is that it is not always easy to break up a

design into useful increments. [Ref. 7] The Incremental Development process of build

and release until complete is shown in Figure 5.

Figure 3. Software Waterfall Model Development [From: Ref. 9]

8

Figure 4. Evolutionary Model With User Involvement [From: Ref. 9]

Figure 5. Incremental Software Development [From: Ref. 9]

4. Prototyping Development
The Prototyping Development methodology is similar to a hardware bread-board

design where basic technical components are integrated to establish that the pieces work

together. Like bread-boarding, prototyping software developments are relatively "low

fidelity" compared to the eventual system. This procedure provides the user with an

experimental system to evaluate their initial requirements. Once the initial requirements

are understood, the final requirements can be easily determined. Computer-aided
9

software engineering (CASE) tools are extremely beneficial in developing prototype

systems.

CASE tools help the contractor efficiently develop relatively defect free, easily

modified, quality software. Besides providing the user with a prototype system, CASE

tools can also be used for planning and estimation, requirements analysis and design,

architectural design flexibility, improving productivity, shortening lead time, and freeing

up software developers from mundane tasks.

5. Spiral Development

The Spiral Development model was developed by Dr. Barry Boehm in 1987 as a

risk-reduction approach to software development. This methodology illustrates the

software developm effort, and

angular displacement as a measure of progress. Looking at Figure 6., starting at the

center with project definition and working clockwise through the spiral, each cycle

includes a review of objectives, alternatives, constraints, various analyses (including risk

analysis), and one or more products are delivered. [Ref. 9]

The advantage to the Spiral model is that it emphasizes evaluation of alternatives

using risk analysis, and provides flexibility to the software development process. This is

accomplished by using basic Waterfall building blocks and Evolutionary/Incremental

prototyping approaches to complete the software development. [Ref. 7]

6. Object-Oriented Development
ith the Object-Oriented Development methodology, procedures and data are

combined into unified objects. The Object-Oriented system is a collection of classes and

objects and how they relate to each other. As an example of this class/object relationship,

Figure 7. illustrates the "class" as missile, and a guidance system as an "object". Because

the guidance system is a member or subset of the "class" missile, the guidance system

will inherit all of the same attributes from the "class" missile, such as cost, dimensions,

weight, range, and any other possible attributes. [Ref. 10]

ent as a spiral with radial distance as a measure of cost or

W

10

Figure 6. Spiral Development Methodology [F

11

rom: Ref. 9]

The Object-Oriented programming is not usually considered a stand-alone

development process. An Evolutionary/Spiral type methodology should be used with the

Object-Oriented process, because it would be difficult to define all the required classes

for a major system or product in a single iteration. [Ref. 10]

For example, beginning in the center of the Spiral model, communication with the

customer helps define the program, and identify the classes or major design points. Then,

planning and risk analysis establish the foundation for the Object-Oriented project plan.

All technical work that follows will be accomplished through an iterative approach.

Object-Oriented programming always searches a library of classes to determine if reuse

software is available. If not, the Object-Oriented method begins the process of analysis,

design, programming, and testing to create the new class, and all the objects derived from

that class. The new class is added to the library, and the process continues until the end

of the development. [Ref. 10]

Figure 7. Object-Oriented Inheritance From Class To Object [From: Ref.10]

Class: Missile

Cost

Dimensions

Weight

Range

Velocity

Object: Guidance System

Cost

Dimensions

Weight

Range

Velocity

The object inherits all attributes of the class

Class: Missile

Cost

Dimensions

Weight

Range

Velocity

Object: Guidance System

Cost

Dimensions

Weight

Range

Velocity

The object inherits all attributes of the class

B. PRI

. Analogy

terceptor, the analyst would

search

MARY METHODS TO ESTIMATE SOFTWARE COSTS

1

With an Analogy method, lines of code and cost estimates are based on a

historical database of similar type programs. This methodology is usually the most

accurate means during the beginning of a program. For example, to estimate the lines of

code and software cost associated with a new cruise missile in

the database for an existing missiles with similar launch, flight, fusing and

warhead characteristics. If one or more similar missiles are included in the database, the

software development and maintenance cost could then be used as a basis for the new

estimate. However, due to the advanced technologies within defense programs, most

databases do not include similar projects. The Analogy technique is often used as a

secondary method to check other estimates for reasonability. [Ref. 7]

12

2. Parametric Estimating

Parametric estimating involves using mathematical equations based on cost

A larger database w

estimating relationships (CERs) to estimate software costs. As a top-level example of a

CER, an analyst may provide a program manager a quick estimate based on the SLOC

anticipated for development of a missile multiplied by a cost figure (i.e., 14,000 SLOC

multiplied by $200 yields an estimated cost of $2.8 million). The CERs express cost as a

function of one or more cost driving variables, and are developed from historical

databases of similar software projects.

 In order to develop a CER, the analyst begins by analyzing a project to determine

what factors could influence the cost of the project. Using the missile analogy again, the

analyst may speculate that SLOC developed and maintained for a missile could

potentially be used to estimate the total software development cost of a new missile. At

this point, the analyst would collect data to validate those assumptions.

Care must be taken to ensure that the data is normalized, for instance comparing

the cost per SLOC of a missile developed and built five years ago will be different from

one built last year. Therefore, the cost of the missile built five years ago will be escalated

to a more current year. Once this is accomplished, the relationship can be tested, by

plotting the normalized historical data from all of the different completed missiles. If the

resulting graph is linear, then there is a good chance the relationship is valid.

ill statistically provide a higher confidence that the

rel v o aid

in this process. Figure CER shows the process required to create a CER. The Parametric

mat the computer

softwar CSCI) level. [Ref. 7]

A CSCI is defined as a collection of software that satisfies a common end use

function. Typically, when the size of the overall system or CSCI exceeds 100,000 lines

of code, it is further partitioned into more manageable tiers called software units (SUs).

Parametric software cost estimating models are fairly easy to use and can provide quick

estimates that in most cases are more accurate than other methodologies. [Ref. 7]

ationship is alid. There are user-friendly statistical software programs available t

esti ing method is normally used to estimate the overall system or at

e configuration items (

13

Figu

nts required for

Acquis

evel. This

approach is time consuming and only as good as the design. As the quality and design of

the project improve, so does the estimate. This method does make it easier to track the

success of the project, because of the level of detail. [Ref. 7]

Just like the other methodologies,

historical data is not always available to compare projects. The detailed process required

to complete a Bottoms Up estimate is illustrated in Figure 10.

re 8. Cost Estimating Relationship Development Process [From: Ref. 7]

A detailed process to normalize data required to create a CER is shown in Figure

9. There are also polices and procedures for calibrating and validating the software cost

estimating models. At the time this thesis was being written, OSD was re-writing/re-

placing the 5000 series that included most of the policies and requireme

ition Category (ACAT) programs.

3. Bottoms-up Approach
The Bottoms-Up estimating approach requires the project to be sufficiently

designed to permit reasonable estimates at the SU level. These detailed SU cost

estimates are then added up to the CSCI level and ultimately at the project l

 One of the major disadvantages of this method is that many times the costs for

software integration activities are not captured.

14

Figure 9. Normalization of Data [From: Ref. 7]

4. Engineering Judgment
The Engineering Judgment estimate is basically what is considered an educated

guess. With this approach, experienced software engineers estimate the size of the code

ba i loped.

Several cost analysts with over twenty years experience in the estimating profession,

have st

Therefore, an engineering estimate, or what is fondly referred to a "back of the

envelope" estimate, is as good as any other estimating methodology. For example, the

analyst might multiply a current cost do develop code by the estimated SLOC count, and

then double or triple the estimate. Unfortunately, this is the methodology with which

most so

sed on prev ous software experience and their knowledge of functions to be deve

ated that many times, because of poor program definition, there has been no real

basis for the estimate.

ftware estimates are forced to begin. This method is useful for determining inputs

into other models, but not sufficient for use as the basis of an estimate. [Ref. 7]

15

Data Flow
Diagrams

System
Concept

Operations
Concept

Request for proposal/
Statement of Work
Analysis

Customer
Derived
Requirements

Data Flow
Diagrams

System
Concept

Operations
Concept

Request for proposal/
Statement of Work
Analysis

Customer
Derived
Requirements

Figure 10. "Bottoms Up" Software Estimating Process [From: Ref.11]

Functional

Architecture

CSCI
Schedules
Determined

Total Bottoms Up
Cost and Schedule

Estimate

Language Functions &

CSCI Tasks
Manloaded
By Schedule

System Engineering
Software Engineering
Test Engineering

Centralized SoftwareRequirements
Allocat

Hardware

Inputs CSCI

Documentation
Design views
Identifi

Trade Studies
and Tools
Identified

Supervision Walk
Throughs, S/W
Support Library

Functional

Architecture

CSCI
Schedules
Determined

Total Bottoms Up
Cost and Schedule

Estimate

Language Functions &

CSCI Tasks
Manloaded
By Schedule

System Engineering
Software Engineering
Test Engineering

Centralized SoftwareRequirements
Allocat

Hardware

Inputs CSCI

Documentation
Design views
Identifi

Trade Studies
and Tools
Identified

Supervision Walk
Throughs, S/W
Support Library

Decomposition
Flow Charts

Determined Modules
Named & Sized

Distributed Requirements ion Software
Other

Processing
Outputs

Identified Decomposition
Flow Charts

Determined Modules
Named & Sized

Distributed Requirements ion Software
Other

Processing
Outputs

Identified

ReRe
ed ed

C. SOFTWARE COST ESTIMATE PROCESS

Prior to beginning the process of preparing the cost estimate, the program office is

required to prepare a Cost Analysis Requirements Document (CARD). This document

provides a description of the most important features down to the Work Breakdown

Structure (WBS) level of the program and serves as the basis for all cost estimates. It

also defines and provides quantitative descriptions of the program characteristics. [Ref.

4,18] Because of the magnitude of this document, an Integrated Product Team (IPT)

should be established to prepare the CARD. Other documents such as the Operational

Requirements Document (ORD) and Performance Specification documents will assist in

the development of the CARD. The IPT should include representatives from all of the

critical areas of t

he Office Secretary Of Defense, Cost Analysis Improvement Group (CAIG,)

require vered to them 180 days prior to a milestone

review

maintained throughout the life of the program. The program office is required to prepare

he program.

T

s that a draft of this document be deli

and a final copy 45 days prior to the review. The CAIG will use the CARD to

prepare an Independent Cost Estimate (ICE) of the program. [Ref. 4]

The CARD is a living document, and it is critical that configuration control be

16

a new CARD if there are any major changes to the exiting program or if alternative

designs are evaluated. For example, the initial CARD was based on a missile that only

intercep

hould be

managed through the IPT. The process begins with the IPT breaking the total software

development project into manageable lower-level CSCI and SU elements. Then, the

team can determine the scope (size) of each element, assess the software development

environments, and perform assessments of alternatives and risk factors.

Once the functional decomposition is complete, the various environments can be

quantified, evaluated, and "high/low" boundaries can be assessed. This will establish the

initial parameters required for the baseline estimates of cost, schedule, resources, and

support. This process was designed to prepare the project for a contactor bid. However,

it can be easily adapted for any phase of the development. [Ref. 9]

1. Design Baseline

The most effective method of managing a large software development is to

decompose the project into manageable parts. Decomposition can be accomplished by

two different methods. One involves a functional decomposition of the program, which

ivides it into basic components from the user's perspective. The other is design-

omp components or modules. Both of

these m

ts fixed-wing aircraft. Now the User has delivered a new ORD that requires the

missile to also intercept helicopters, unmanned vehicles, and cruise missiles. Therefore, a

new CARD must be developed to incorporate the additional requirements. This is a

prime example of "requirements creep," and in most cases a "new start" is required.

The software cost estimating process in Table 1. provides a systematic approach

to successfully prepare the project software cost estimate. This process s

d

dec osition, which divides the project into software

ethods make it easier for the analyst to realistically estimate size, time, and

manpower required for each function. This has been referred to as the "divide and

conquer" method, and is also in line with Spiral and Evolutionary development methods.

[Ref. 9]

17

Phase Major Activity Specific Products

Design Baseline Define a point of sufficient precision to List of CSCIs, functionality
identify the num
required function

Table 1. Software Estimating Process Elements [After:

Convert labor and other direct charge (ODC)
estimates into contractor's price and
determine the Project Bid.

Projection information, produce a revised Project Estimate Complete, Size-to-Cost.
and determine the remaining costs and
schedule to complete for the on-going project

ber of CSCIs and the and similar completed projects
ality of each. or CSCIs.

Size Ba

Baseline phases, determine the environmental parameters and their initial
g with a written

perform the job. rational for each.

Software Baseline Using the size and environment products, Output from the software cost

Project Baseline Using the output from the Software Baseline A complete estimate of the costs

included in the particular software cost portion of the project.

Risk An

what-if analyses. Determine the size and/or explanations.

personnel constraints, risk analysis, etc.

Dynamic Cost Using existing known environment and size Cost-to-Complete, Schedule-to-

seline Using the products from the Design phase, List of CSCIs with appropriate
define the expected size for each CSCI. size information

Environmental Using the products from the two previous List of software cost model

characteristics required and available to settings alon

Estimate make a software cost model run (using model showing schedule an
whatever model best satisfies the cost information.
organizations needs).

Estimate phase, add those elements not and schedule for the software

model (each model has a specific set of
items not included in the estimate) and
remove elements included in the estimate
that are not part of the project.

alysis Determine the cost/schedule risk associated Risk assessment, risk graphs
with the Project Estimate. Make changes to risk memorandum with
the size or environment products to perform Parameter-by-parameter risk

environment setting required to validate
the final software bid.

Project Bid Perform analysis of the Project Estimate, Project Bid.
considering such factors as expected
competition, type of contract, budgetary or

 Ref. 9].

2. Software Size
Predicting the size and complexity of the software required for a program is the

leading cause of cost overruns and schedule slips. [Ref. 9] Most of the cost models

18

reviewed for this thesis require an input for how many SLOC would be in the project.

Thus, the first basic step in developing a cost estimate is determining the lines of code

required for the program. The size and complexity of the program will significantly

influence the resources required to estimate the program. To make this even more

complicated, requirements creep will continually increase the estimated lines of code.

SLOC can have different definitions based on the user and the developer. The

Software Engineering Institute recommended that DoD organization use SLOC as the

first m e size. The SEI also recommended that program offices should

establish a clear definition of what is considered a SLOC. Table 2. is provided to assist

the program manager in determining which type of statements should be included and

excluded from the SLOC count. For example, if the checklist in Table 2. is provided in

the request for proposals, the resulting bids can be evaluated with less confusion. [Ref.

13]

Another factor to consider when calculating SLOC counts is how much of the

software development will be reuse code. Reuse code is pre-existing code from another

software program and used in the new development. Sometimes, incorporating reuse

code into the program can save significant resources. However, if the pre-existing code

is poorly designed and documented, the cost can actually be greater. The quality of the

reuse code must be considered when estimating the cost. Another factor to consider is

whether the code was initially designed with the intention of being reused. Usually code

that was designed with the intent that it would be modular and reusable is better

documented and easier to modify.

One of the earliest best-known software cost models was the Constructive Cost

Model (COCOMO), released in 1981. This version discounted modified reuse code by

90 percent of what it would have cost had it been built from scratch. The new version of

COCOMO released in 2000, now only discounts reuse by 50 percent. This was changed

because the data and actual experience over the last few years has changed. [Ref. 12]

The savings may vary based upon integration and testing required. Most estimating

models are adjusted based on the application of the reuse code, the company's prior

easure of softwar

19

experience, or are adjusted within the SLOC count. If the program contains a lot of reuse

code, the model selected should be evaluated to determine how the code is estimated.

Table 2. Definition Checklist for SLOC [After: Ref. 9]

3. Environmental Inputs
There are many environmental factors that impact the overall software cost of a

program. These factors are incorporated slightly different in each of the software cost

models. Care should be taken to ensure that the model selected includes all of the

necessary parameters that could impact program costs, and likewise, exclude any

paramete o an actual

questionnaire, sent out to government contractors in order to collect data to prepare a

comma lopment cost estimate, is illustrated in Figure 11.

An example of a common set of environmental factors embedded in the Revised

Intermediate COCOMO (REVIC) model is shown in Table 2. It is beyond the scope of

Statement Type Order of Includes Excludes
Precedence

When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable 1 X
2 Nonexecutable
3 Declarations 2 X
4 Compiler Directives 3 X
5 Comments
6 On their on lines 4 X
7 On lines with source code 5 X
8 Banners and nonblank spacers 6 X
9 Blank (empty) comments 7 X

10 Blank Lines 8 X
11
12

How Produced Includes Excludes
1 Programmed X
2 Generated with source code generators X
3 Converted with automated translators X
4 Copied or reused without change X
5 Modified X
6 Removed X
7
8

rs that w uld adversely impact the program. An example of

nd and control software deve

20

this thesis to address each one of the environmental factors, however, it will include

enough information to provide an understanding of how the models adjust cost.
SOFTWARE ENVIROMENT

1=High, 2=High, 3=Normal, 4=Low, 5=Very Low
PERSONNEL Application Experience PRODUCT FAMILIARITY Familiar type of product

Analyst Capabilities Normal, new product

Figure 11. Example of Questionnaire to Industry [From: Ref.14]

Analyst Capability Required Software Reliability
Programming Team Capability Database Size
Project Application Experience Software Product Complexity
Virtual Machine Experience Required Reusability
Language Experience

e any other relevant development factors to be considered?

Cost Input Base Year 20_ _

Risk: 0.0%

Please place the applicable rating in the appropriate box.

Rate using the above Management Experience Select One New line of business
scale. Language and Tools

Select One Nominal Select One New hardware

Please describe the levels of integration required within this CSCI (internal) and between this CSCI and others (external).

Closely coupled interface, strict timing protocols, many interrupts

OTHER:
hat is process maturity level? (e.g., CMM 1-5)

Are there any driving HW resource requirements? (e.g., RAM utilization, hw cycle time,..)

Are ther

Processor Utilization %:

Composite Labor Rate $0.00

Platform Experience

SOFTWARE TOOLS Very Highly Automated COMPLICATING FACTORS New language
Highly Automated Requirements complete at start

Low More than one development location:
Very Low

INTEGRATION:

(Check one each for internal/external)

Integration Requirements Internal External
Loosely coupled interface, minimum timing constraints & interaction

Strict, tightly coupled interface, strictest timing protocols & constraints

W

Table 3. Types of Environmental Factors [After: Ref. 15]

expert-judgment values from "very-low" to "very-high," and in some cases from "very-

low" to "extra extra-high," depending on the factor. These subjective factors are then

Modern Programming Practices
Execu
Main S

The IPT approach should once again be used to evaluate these factors and assign

tion Time Constraints Use of Softwae Tools
torage Constraints Classified Security Application

Virtual Machine Volatility Management Reserve for Risk
Computer Turnaround Time Required Development Schedule
Requirements Volatility

21

assigned numerical values to be multiplied together to effect overall software cost. The

numerical values are derived from historical databases of similar type programs.

Table 3. is an example of the one of the factors from the REVIC model. The

example reflects that a programmer team ranked in the 90th percentile would receive a

score of "very high," because an experienced programming team can produce more code

in a shorter period of time. Therefore, the database assigns the numerical multiplication

factor of ".71," which would reduce the cost of the estimate. The cost analyst needs to

understand exactly what each factor includes.

Table 4. REVIC Example of Programmer Capabilities [From: Ref. 15]

The software Capability Maturity Model (CMM) is used to assess the

effectiveness of a company's software processes. Table 5. outlines the different process

maturity levels, describes the characteristics of each level, and shows productivity and

risk projections. The DoD requires that companies must have a CMM level of three or

higher to bid on contracts. This ensures but does not guarantee that contractors

submitting bids have the appropriate software development teams with the experience

required to de ro [Ref. 9]

h ccount for the CMM levels in a slightly different

method

Rating Skill Level Factor
Very Low 15th Percentile 1.46
Low 35th Percentile 1.19
Nominal 55th Percentile 1.00
HI 75th Percentile 0.86
Very High 90th Percentile 0.71

liver the p duct on-budget, on-schedule and fully capable.

 Eac of the software models a

. For example, the new version of COCOMO II has an input for "Estimated

Process Maturity Level" [COCOMO II], while PRICE S considers several factors such as

efficiency, skills, familiarity and intensity of the effort. Studies have shown that

companies with higher levels of CMM are more likely to perform better in the software

development process. The CMM was developed based on work conducted by Watts

Humphrey of the Software Engineering Institute at Carnegie Mellon University. [Ref. 7]

22

Table 5. General Characteristics of Each Maturity Level of The CMM [From: Ref. 9].

For example, a CMM level three certified team with four or more years

experience developing code in a given language and using modern software engineering

methods would score a rating of "extra high." This "extra high" rating would

automatically lower the cost for developing the software. Likewise, a development team

with less than one year of experience working together may receive a rating of "low,"

which increases the risk and cost appropriately. [Ref. 16]

Another environmental parameter that influences several factors is the application

type of the software development. Typical applications for military systems include

command and control, data base management, diagnostics, graphics, message switching,

mission planning, RADAR/Sensor processing, and systems engineering simulation, etc.

The software cost models make adjustments to the overall cost based on application types

by assigning complexity factors to product reliability, software complexity, and

classification types.

For example, if the software application is being developed for a RADAR or Fire

Control system, the software complexity factor would be considered "High," and the cost

would be multiplied notionally by 25 percent to cover the extra cost required to develop

this softwa i munications

networks, the software complexity factor may be considered "nominal" and applications

re. Likew se, if the software is for user interfaces or com

23

for adm

be completed; and how much detail is required. For example, the program should use a

parametric software cost estimating model if detailed cost and schedule are required. The

estimating model usually is much better than the other methods, because analysts are less

likely to leave out an important parameter.

D. SOFTWARE COST ESTIMATING MODELS
There are several excellent software models available to the program office for

estimating software costs. The following models are currently the most widely used in

alphabetical order): COCOMO II, CostXPert, PRICE S, REVIC/SoftEST, Sage, System

Evalua

Most of the estimating models are now personal computer (PC) based, and fairly

easy to operate with a little training. CostXPert, claims an estimate is possible within

fifteen minutes after product installation. At least one independent evaluator said that this

is entirely possible. [Ref. 20] However, most models would require some level of

training

 When evaluating cost estimating models, the program office should determine if

the model is pre-calibrated with similar applications that will yield reasonable results. It

may be necessary to calibrate the model for the application. For example, the rating

inistrative data processing may be considered "low." There would not be an

increase in cost for a nominal factor, but the "low" factor would reduce the cost

notionally by 25 percent. The term "notionally" is used because each model has a

slightly different method of accounting for numerical complexity factors. [Ref. 16]

.

4. Software Baseline Cost Estimate
Once the size, reuse, and environmental parameters have been determined, the

analyst is now ready to estimate the program using one of the estimating methodologies

identified in Chapter II. When considering which method should be used to estimate the

program, the following questions should be asked: how quick does the estimate have to

tion and Estimation of Resources (SEER), Software Life Cycle Management

(SLIM). [Ref. 19] Appendix B. includes websites where detailed information on

capabilities and purchase cost can be found.

 to ensure maximum understanding of the tool.

24

scales used by COCOMO II for personnel factors, such as analyst and programmer

capability, may not be suitable for a different organization. The COCOMO II developer

recommends the organization have at lest five data-points to modify the multiplicative

constant and ten data points for calibrating both the calibrating and the baseline exponent

before changing the baseline. [Ref. 12]

When calibrating the model at the contractor level, validation of the model is

accomplished by demonstrating the credibility of the parametric model prior to

submitting an estimate to the government or higher tier contractor. Both calibration and

validation should be conducted on a periodic basis throughout the software's

development. [Ref. 7]

25

THIS PAGE INTENTIONALLY LEFT BLANK

26

III. DATA TO BE ANALYZED

The primary research question for this thesis was centered on the problems that

cause software cost estimates to be inaccurate. The secondary questions were designed to

determine the impact of critical cost drivers on the software cost estimate. Two different

methods were used to collect data for this thesis. The first method involved interviewing

professionals in the software development and cost analysis communities, and former

program managers of major defense programs. The second method involved researching

various resources to obtain specific program data to validate the problems identified by

the professionals.

The data from the interviews came from three categories of professionals: cost

analysis, program management, and academia. Of the six cost analysts interviewed, the

experience estimating software cost ranged from two to twenty years. Five of the

analysts are currently government personnel. Of those, two are assigned to program

offices and the other three work in a Cost Analysis office. One of the cost analysts works

for a prime contractor of a major defense program. The program managers interviewed

included two officers who were former program managers of major defense programs,

and two civilians who are currently working for major defense acquisition programs. The

program managers' experience spans ten to twenty years with both ACAT 1, 2 and 3 type

programs. The instructor interviewed has been teaching software-related courses for

several years at the Defense Acquisition University. These individuals are listed in

Appendix B.

The specific program data comes from two sources. The first data is from a 2002

memorandum concerning contractor performance of a major defense program. This

memorandum provided current quantitative data, which is relevant to most complex,

software intensive, weapon systems of today. The second data source is from a General

Accounting Office (GAO) audit of the Federal Aviation Administration's (FAA) Standard

Terminal Automation Replacement System, conducted in January 1998. Both of these

sources were useful in validating the problems identified by the individuals interviewed.

There were many books, guidebooks, journal articles, and industry briefs that non-

27

quantitatively validated these findings. For example, Table 6, from the Air Force

Software Technology Support Center, produced the Guidelines for Successful Acquisition

and Management of Software-Intensive Systems (GSAM) that included non-quantitative

but useful data on the software risk areas associated with software developments.

Another example of non-quantitative data is shown in Table 7.

he remainder of this Chapter is divided into software cost estimating risk

categor s that were derived from the interviews and other sources. The risk categories

are organized first by listing problems identified by the individuals interviewed.

Comm by cost analysts and academia will be referenced as "professionals,"

and program management individuals will be referenced as "management." Second,

inform am data paragraph will be referenced as "defense program" or

"FAA program."

A. REQUIREMENTS
One of the leading causes of inaccurate software cost estimates identified by both

groups interviewed, related to program requirements. The following paragraphs provide

data on the various problems associated with requirements.

1. Interviews
Both professionals and management indicated that program requirements were

usually poorly defined and highly unstable, making it extremely difficult to estimate the

software development cost. The professionals further stated that DoD software intensive

programs include advanced technologies that make the estimating process more complex.

They stated that historical data normally used to compare programs and calibrate

software cost estimating models were not readily available for advanced technologies.

One professional said that a primary problem within Government program offices is that

there is no requirements development framework.

Management stated that budget cuts, politics, and changing user requirements

were constantly affecting requirements baseline. Management also stated that having too

many bosses affected requirements. Another problem identified by management was that

improper assumptions were made on requirements.

T

ie

ents provided

ation in the progr

28

Tab

Table 6. Software Risk Areas [After: Ref. 9]

Poor training

Other Inadequate or excessive documentation or review process

Legal or contractual issues (such as litigation, malpractice, ownership)
Obsolescence (includes excessive schedule length)

Unanticipated difficulties with subcontracted items

Unanticipated maintenance and/or support costs

Poor training

Other Inadequate or excessive documentation or review process

Legal or contractual issues (such as litigation, malpractice, ownership)
Obsolescence (includes excessive schedule length)

Unanticipated difficulties with subcontracted items

Unanticipated maintenance and/or support costs

Lags in the adoption of fundamental metrics
Lags in the productivity measurement technology
Schedules are longer than any other kind of software project

Contracts for software have the highest rates of challenges and
li
C

Lags in the adoption of fundamental metrics
Lags in the productivity measurement technology
Schedules are longer than any other kind of software project

Contracts for software have the highest rates of challenges and
li
C

Program Level Excessive, immature, unrealistic, or unstable requirements

Program Attributes Performance shortfalls (includes defects and quality)

engineering, or systems engineering (multiple levels possible)

Inadequate work plans or configuration control

Inappropriate methods or tool selection or inaccurate metrics

Program Level Excessive, immature, unrealistic, or unstable requirements

Program Attributes Performance shortfalls (includes defects and quality)

engineering, or systems engineering (multiple levels possible)

Inadequate work plans or configuration control

Inappropriate methods or tool selection or inaccurate metrics

Lack of user involvement

Underestimation of program complexity or dynamic nature

Unrealistic cost or schedule (estimates and/or allocated amounts)

Management Ineffective program management (multiple levels possible)

Engineering Ineffective integration, assembly and test, quality control, specialty

Unanticipated difficulties associated with the user interface

Work Environment Immature or untried design, process, or technologies selected

Lack of user involvement

Underestimation of program complexity or dynamic nature

Unrealistic cost or schedule (estimates and/or allocated amounts)

Management Ineffective program management (multiple levels possible)

Engineering Ineffective integration, assembly and test, quality control, specialty

Unanticipated difficulties associated with the user interface

Work Environment Immature or untried design, process, or technologies selected

le 7. Factors Where DoD Software Lags Behind Commercial Programs [After: Ref.24]

Contractors lag in training and education of technical staff
Contractors lag in training of project managers
Contracted software has the highest growth of creeping user
requirements
Contractors less effective at the Software Engineering Institute
maturity levels compared to civilian performance-based contracts

Contractors lag in training and education of technical staff
Contractors lag in training of project managers
Contracted software has the highest growth of creeping user
requirements
Contractors less effective at the Software Engineering Institute
maturity levels compared to civilian performance-based contracts

Productivity is lower than for any other industry

tigation
ontractors rank first in layoffs and downsizing

Contractors lag in staff benefits and compensation

Productivity is lower than for any other industry

tigation
ontractors rank first in layoffs and downsizing

Contractors lag in staff benefits and compensation

29

2. Program Data
The following paragraphs include requirements-related data from the FAA and

defense program that can negatively impact cost. The GAO audit stated that the FAA

program had to increase their estimate for new and modified code by 50 percent after the

first two years based on improper requirements assumptions. The GAO audit stated the

FAA p

. SCHEDULE
of a program is determined by the following three

parame

 determined that the FAA program

improp

n month.

rogram requirements increased from the first day the development schedule was

set. The audit also indicated the user was dissatisfied with the product. [Ref. 31]

With the defense program, the memorandum stated the contractor had

management errors that included poor requirements definition prior to coding, and design

problems that relied too heavily on a separate program being developed in parallel. The

result was schedule and manpower estimates increased by 35 Percent.

B
Determining the success

ters: on-time, on-budget, and performs according to requirements. Having a

realistic schedule is necessary in order to achieve success. The following paragraphs

identify schedule risk that ultimately impact cost.

1. Interviews
Analyst and management indicated that exaggerated productivity rates proposed

by contractors impacted schedules. The analyst also stated that historical data to validate

productivity rates was not available. Management indicated that most contractor

software delivery schedules are unrealistic, and that, most of the time, contractors

proposed exaggerated productivity rates to win contracts.

2. Program Data
These paragraphs include data from the FAA and defense program that could

adversely impact the schedule cost. The audit

erly developed their schedule by working backwards from a predetermined date

rather than by estimating the schedule based on the size and complexity of the software

development. Another problem with the FAA program was that productivity rates were

57 percent less than the projected 240 SLOC per ma

30

With the defense program, the memorandum stated that schedules were primarily

based on exaggerated productivity levels. For example, the contractor proposal indicated

they could produce 300 SLOC per man-month, which included designing, coding, testing

and integrating, but only realized 120 SLOC. The memorandum also stated the

contractor relied heavily on reuse software code from another complex program that was

still in development to further justify an optimistic schedule.

C. PROGRAM PLANNING
Initial program planning is essential to produce software that meets cost, schedule

and performance goals. The following paragraphs outline risks associated with program

planning that negatively impact cost.

1. Interviews
Management indicated that poor planning at the beginning of the program had

lasting impacts over the life of the program. They stated the root cause of poor planning

is inadequately trained staff. For example, management indicated that many of the

software managers and cost analysts were not trained in the latest development processes

and software estimating tools that help develop plans. Likewise, the professionals

indicated that ma fficiently to manage

software intensive weapon systems.

2. Program Data
These paragraphs include data from the FAA and defense program that indicate

poor planning. The audit reported the contractor for the FAA program initially proposed

unrealistic productivity rates. The contractor probably considered this to be strategic

planning instead of poor planning. The audit stated that it was poor planning for the

contractor to wait three months to assign a software manager to the program. The

contractor's timing for implementing a new corporate software development tool early in

the life of the program was also questioned. The program eliminated Partial System Test

1 and compressed the schedule for other test. The air traffic controllers experienced low

user satisfaction with the computer-human interface.

The memorandum for the defense program listed five examples of poor planning

on the part of the contractor which include: 1) initially proposed unrealistic schedules and

ny of the program managers were not trained su

31

productivity rates; 2) relied heavily on another program under development for software

reuse; 3) systems engineering and software engineering activities were scattered; 4)

inexperienced in software development methodologies for the programming language;

and 5) overall staff was poorly trained.

D. SOFTWARE MAINTAINANCE AND SUPPORTABILITY
Software maintenance and support can account for over 70 percent of the total life

cycle costs for a software system. [Ref. 22] The following paragraphs identify problems

that impact cost associated with software maintenance and support.

1. Interviews
The professionals interviewed indicated that poorly defined programs at the

beginning, along with unstable requirements, caused software estimates for maintenance

and support to be inaccurate. They said that this occurred primarily because the software

s

functio elopment.

rogram.

The memorandum stated the defense program contractor initially had poor requirements

definiti

The defense program's contractor had a poorly trained staff and the programmers

ere inexperienced in the software methodology employed. The program experienced

n prior to coding.

nagement personnel. Data from the

cost e timates were based on initial estimates of source lines of code or number of

ns to be performed by the dev

2. Program Data
These paragraphs include data from the FAA and defense program that could

affect maintenance and support cost in the future. The FAA program eliminated Partial

System Test 1 and compressed the schedule for other tests, including Partial System Test

2, Installation and Integration Tests, and Site Acceptance Tests. The contractor

introduced a new corporate software development tool early in the life of the p

on prior to coding. The contractor's staff were poorly trained and inexperienced in

the development methodology for the programming language required.

w

poor requirements definitio

E. DATA SUMMARY
 Chapter IV will analyze the cost implications by risk category for each of the

problems identified by the professionals, and ma

32

GAO audit of the FAA program, and the defense program, will also be analyzed.

Chapte

r V provides recommendations and conclusions to avoid these problems.

33

THIS PAGE INTENTIONALLY LEFT BLANK

34

IV. ANALYSIS OF DATA

Chapter III outlined problems associated with software cost estimating

inaccuracies identified by professionals in the software development and cost analysis

communities, and former program managers of major defense programs. Chapter III also

included actual data from two complex software intensive programs. This chapter will

analyze each category of risk identified in Chapter III as well as the potential cost

impacts to a program, for each of the problems identified.

The first phase in most software life cycle development programs is requirements

requirements analysis is performed poorly, it permeates

through

2. SLOC and Function Points Estimates
Most methods for estimating software costs use SLOC or function points as a

parame r to calculate cost. Therefore, if the requirements are unstable or poorly defined,

estimating SLOC and function points is difficult because these initial parameter estimates

will drive the cost for the entire software development. For example, the FAA program

hoped to use 85 percent COTS software and 15 percent new/modified code. However, by

ultimately using less COTS and increasing new/modified code by 50 percent, the original

cost estimate increased by 33 percent.

. Advanced Technology Impact
Uncertainties associated with advanced technologies within a program make it

difficult to conduct requirements analysis and design programs. Once again, this usually

results in underestimated SLOC and function points. The problem is compounded when

improper complexity factors are applied to the SLOC and function point estimates. The

A. REQUIREMENTS ANALYSIS

1. Requirements Definition

analysis and specification. When

out the life cycle of the program. For example, if the poorly defined requirements

make it into the request for proposal (RFP), the contractor who was awarded the contract

by the Government would almost certainly have a severely underestimated development

program.

te

3

35

risk for these estimates increase because there is often no historical data against which the

estimate can be compared.

4. User Involvement
anagement and data from the audit of the FAA program indicated that changing

requirements from the user impacted requirements analysis. Obviously, the user was not

adequately included in the requirements, design, development and test phases of the

program. This resulted in a product being delivered that did not meet the users

requirements. Having to modify code later in the development phase is more expensive.

. Requirements Development Framework
ne of the professionals mentioned that the Government programs do not always

have a requirements development framework. The requirements framework will ensure

that traceability of the requirements is controlled. The impact of not controlling

requirements is the possibility that requirements may be added or omitted without

properly documenting the change.

. Budget Cuts and Politics
Management indicated that additional problems with managing requirements

resulted when too many levels of supervision were involved in the management process.

People external to the program office will often impose changes to the program. For

example, budget cuts may reduce the capabilities of the program, which results in a

failure to meet requirements. Additionally, politics may dictate where the program

spends its money, causing critical requirements to be delayed.

. Improper Assumptions
proper initial assumptions in the requirements phase typically lead to cost and

schedule problems. For example, the FAA program assumed that 85 percent of the

development would be simple COTS. When the COTS estimate was decreased and the

new/m d code increased two years later, the cost increased by 33 percent over the

original estimate.

B. SCHEDULE REALISM

. Unrealistic Schedules

M

5
O

6

7
Im

odifie

1

36

The realism of the fully manage software

intensive program. The contractor must have the personnel, facilities, experience, and the

time re

program office was forced to

crease their schedule time by 35 percent.

es
se program exaggerated their productivity

rates.

king into the schedule, or compressing the schedule is not a problem if the

program example, the program manager’s

schedu

y affect program costs because it will be

difficul

cycle cost suffers.

schedule is a key requirement to success

quired to deliver the software product. Any limitation to the above factors will

cause the schedule to slip, and increase cost for the program. For example, the data

indicated that the defense program lacked experienced using the programming language

methodology. As a consequence, the productivity rate originally proposed at 300 SLOC

per man month decreased to less than 120 SLOC per man month. The contractor then

had to re-baseline at the realized production rate, and the

in

2. Exaggerated Productivity Rat
Both contractors for the FAA and defen

One month, the FAA contractor productivity was 57 percent of the projected 240

SLOC per man month. Obviously, at this rate it will take nearly twice as long to

complete the program. As a result, the cost increases because, although the contractor is

producing less, they continue to charge the Government the same rate per hour.

3. Backing into Schedules
Bac

 and contractor have sufficient resources. For

le may be compressed by one year for any given reason. The program manager

has adequate funding to provide the contractor, however, the contractor may not have the

facilities or manpower to meet the new schedule. Therefore, even having unlimited

funding will not always get the job done. [Ref. 26]

C. INITIAL PROGRAMMING PLANNING

1. Poor Planning and Processes
Poor planning and process will ultimatel

t to estimate SLOC and function points. For example, if SLOC and function

points are underestimated, then used to calculate maintenance and support cost, the total

life cycle cost would be severely underestimated. The development will be costlier and

the resulting code will be larger. Larger code typically requires more support, and life

37

2. Staffing and Training Problems
Management indicated the primary reason for poorly planned programs was

inadequ professionals stated the program managers were

not suf

staffing d tr schedule overruns. The FAA

contrac

d COTS code is considered good planning. However,

both m gem with data from both programs, indicated that

the pro

y defined initial requirements was the chief

reason

eds to be designed to be reliable, understandable, and modifiable. All

ree of these factors lower the cost of maintenance and support. For example, the

oorly trained staff with inexperience in the

program ollows that this would impact how well the

code was written. Also, both programs underestimated SLOC based on COTS and reuse

ately trained staff. Likewise, the

ficiently trained to manage software intensive programs. Properly trained

personnel are required to plan and manage the complex processes, and effectively and

efficiently allocate resources. Poor planning during the requirements and design phase

will have lasting cost implications throughout the life cycle.

The same holds true for the contractors. Both the FAA and defense program had

 an aining problems that resulted in cost and

tor waited three months to assign a software manager, and had to spend time

training the staff to operate a new software development tool. If these two activities had

been better planned, the cost may have decreased.

3. Reuse and COTS
Planning to utilize reuse an

ana ent and professionals, along

gram and the contractor often underestimate the utility of using COTS and reuse.

When this occurs, schedules and cost become unrealistic. The cost estimates increase

substantially when new/modified code must be developed.

D. SOFTWARE MAINTENACNE AND SUPPORTABILITY

1. Initial Unstable Requirements
The professionals indicated that poorl

for underestimated software maintenance and support cost. This simply goes back

to underestimating SLOC and function points. When those estimates are inaccurate, the

entire estimate is inaccurate.

2. Initial Design
Software ne

th

defense program contactor had a p

ming language methodology. It f

38

designs

ent cost, but a decrease in quality, and a

program

, which caused the maintenance and support cost to be significantly

underestimated at the end of the program.

3. Testing Requirements
Testing takes place throughout the development of the program. Some of these

tests include unit, integration, system, and acceptance testing. If the contractor neglects

to perform any of these tests, the result is typically software that lacks full functionality.

The resources required to remedy the problems will severely impact the cost, schedule

and performance of the program. The GAO audit stated that the typical outcome, in this

event, is an increase in the expected developm

 that is behind schedule. Ref. 31]

E. DATA ANALYSIS SUMMARY
Chapter V will summarize Chapters III and IV, and present recommendations that

should improve the accuracy of software cost estimates. Chapter V will also readdress

the primary and secondary research questions.

39

THIS PAGE INTENTIONALLY LEFT BLANK

40

V. CONCLUSIONS AND RECOMMENDATIONS

The primary research question for this thesis was centered on the problems that

cause s

clusion of the thesis.

TABILITY

 example, the Standish Group reported in

their analysis that the major reason that software projects fail is because the requirements

were incomplete. [Ref. 2] When requirements are unstable and incomplete, it has been

demonstrated that both Government and contractors will inaccurately estimate SLOC and

function points. For most software cost estimating methods, those are the critical

parame rs required to calculate cost. For example, when the FAA program experienced

problem OC count increased by 50 percent, the original cost estimate

increased by 33 percent. [Ref. 31]

he analysis also concluded that the following activities contributed to unstable

and changing requirements: 1) user's mission continually evolving; 2) lack of user

participation in program IPTs; 3) incorporation of new and advanced technologies; 4)

changing budgets; 5) political influences; 6) and improper initial assumptions. Any and

potentially all of these activities can significantly impact the program. The program

manager should continuously assess what can go wrong with the program.

ven well-defined programs experience requirements growth. For example,

analysis of several thousand applications during benchmark and baseline studies

oftware cost estimates to be inaccurate and recommended solutions that are

available to the program manager. The secondary questions were designed to focus on

the critical cost drivers that have a significant impact on cost. The answers to these

questions are located in Chapters III and IV, and are divided into four risk categories: 1)

requirements; 2) schedule; 3) program planning; and 4) maintainability and

supportability. This Chapter includes conclusions and recommendations for each of the

primary risk categories, and an overall con

A. REQUIREMENTS ANALYSIS S
Everyone interviewed for this thesis stated that the primary problem in estimating

software was poorly defined and unstable requirements. There were numerous articles

and industry briefs to support this premise. For

te

s, and the SL

T

E

41

determ ed that requirements creep averaged 2 percent per month. [Ref. 24] These small

monthly changes can have significant cost, schedule and performance impacts throughout

the development of the software. [Ref. 9]

rogram managers should understand that changes in requirements are inevitable.

Therefore, the program manager should design a software architecture that is flexible and

tolerant to change and also develop a requirements framework plan. These documents

should be written in a clear, concise, and quantifiable manner. These documents and

processes will serve as a primer to ensure requirements are testable and compliant with

mandatory standards. The documentation will also provide the basis to manage and

measure the success of the program. Ther are many program management, software

development, and software cost estimating tools available to assist the program manager.

When choosing a commercial model the program manager should select one that meets

the organization's needs. Typical commercial model capabilities are listed in Table 8.

B. SCHEDULE REALISM
The softwar a given schedule.

Any time there is a deviation in schedule there is a cost impact. The leading cause of

schedule slips identified during the research was contractors exaggerating their software

productivity rates. Typically, the contractor's productivity rate is measured by how many

SLOC or function points can be written by one person in one month. When the contractor

exaggerates this number, as they did in both of the programs discussed in this thesis, the

impact is an increase in both costs and schedule. The contractor must have the people,

experience, facilities, and time to deliver the software product.

The first recommendation for the program manager is to plan and document the

entire program. This would include scheduling, resources, development activities, test

activities, software configuration management, software quality management, risk

management, training, deployment, support and maintenance. A complete baseline of

measures should be performed at the beginning of the program, to include, level of effort,

number of COTS components, personnel profiles, project characteristics, rating standard

used, risk, software product size, and total software cost. Once these baselines are

in

 P

e

e cost estimate is based on the program following

42

established

22]

The second recommendation is to use commercial software development and cost

estimating models to develop baseline estimates. For best results, it is recommended that

an IPT be used to determine which values/factors should be input into the model. It was

highly recommended by the professionals that two or more models be used to compare

results.

 the program

office a basis to compare proposals. It is also recommended that the Government define

in the RFP what is considered a SLOC or function point. One method is to use a matrix

similar to Table 2. [Ref. 9] Additionally, the RFP should include a matrix similar to

, effectiveness should be tracked and measured throughout the program. [Ref.

Table 8. Commercial Model Estimating Capabilities [After: Ref. 24]

en SLOC and function points.

Support for software reusability of various

Support for traditional languages such as

Support for modern languages such as JAVA
and Visual Basic.

Quality and reliability estimation.

Inflation calculations for long-term projects.

Institute's Capability Maturity Model
(CΜΜ)

en SLOC and function points.

Support for software reusability of various

Support for traditional languages such as

Support for modern languages such as JAVA
and Visual Basic.

Quality and reliability estimation.

Inflation calculations for long-term projects.

Institute's Capability Maturity Model
(CΜΜ)

object-oriented metrics.

ppo
betwe

artifacts.

COBOL and FORTRAN.

Estimation templates derived from historical

Links to project management tools such as

projected data.

Currency conversions for international

Estimates keyed to the Software Engineering

object-oriented metrics.

ppo
betwe

artifacts.

COBOL and FORTRAN.

Estimation templates derived from historical

Links to project management tools such as

projected data.

Currency conversions for international

Estimates keyed to the Software Engineering

Most Models include:

Sizing logic for specifications, source code,
and test cases.

Phase-level, activity-level, and task-level
estimation.

Support for both function point metrics and
source lines-of-code (SLOC) metrics.

Support for specialized metrics such as

Some Models Also Include:

Risk and value analysis.

data.

Artemis or Microsoft Project.

Cost and time-to-complete estimates mixing
historical data with

Most Models include:

Sizing logic for specifications, source code,
and test cases.

Phase-level, activity-level, and task-level
estimation.

Support for both function point metrics and
source lines-of-code (SLOC) metrics.

Support for specialized metrics such as

Some Models Also Include:

Risk and value analysis.

data.

Artemis or Microsoft Project.

Cost and time-to-complete estimates mixing
historical data with

Su rt for backfiring or conversion projects.Su rt for backfiring or conversion projects.

Having this information prior to sending out a RFP will provide

43

Table 9 to determine the programmer/developer years of experience for a given software

language. [Ref. 27]

The proposals should include information about the contractor's CMM level. A

contrac

Table 9. Example of Developers Years Experience [From: Ref. 27]

d to include requirements

analysi

numbers. [Ref. 30]

tor with a CMM level IV would most likely have a more realistic cost and

schedule proposal. For a complex software intensive program, the program office should

consider contractors with CMM levels of IV or V. A contractor certified at level III may

propose a lower bid, but they most likely would not be the best value. For example,

studies have shown that improving one CMM level can reduce software development

cost from 4-11 percent. [Ref. 28] Contractors, achieving level 5 are positioned to

maximize quality and productivity for developmental efforts. [Ref. 29] All of these tools

will make it easier for the program office to compare proposals and select the contractor

with the highest probability of delivering the product on-time, on-budget, and fully

mission capable.

Once proposals are received, one of the managers suggested using a

benchmarking tool along with estimating model results to determine if the proposals are

realistic. The manager stated the tool is also useful after contract award to monitor

productivity levels. The database for the benchmarking tool in Table 10 is composed of

500 projects completed in the last seven years. The data is scope

s, architectural design, development, and software integration and test. Note, all

the data is presented in ranges. Donald Reifer stated in Crosstalk Journal, that although

an average productivity of SLOC/staff month is provided, the benchmarking tool is best

used to determine if a productivity level falls within a range for a given application.

Reifer also expressed concern that people would misquote or use the numbers incorrectly.

Therefore, it is strongly recommended that anyone who wishes to use this data, should

refer to the March 2002 Crosstalk Journal to avoid incorrect interpretation of the

44

Table 10. Software Productivity (SLOC/staff month) [After: Ref. 30]

C. PROGRAMMING AND PLANNING
Poor programming and planning effects software cost estimates in the same

manner as requirements and schedule. They all affect the SLOC and function point

estimates. One method to mitigate risk associated with programming and planning is to

use the Sixteen Critical Software Practices TM for performance-based management,

developed by the Software Program Managers Network. The sixteen practices include:

1) adopt continuous program risk management; 2) estimate cost and schedule

empirically; 3) use metrics to manage; 4) track earned value; 5) track defects against

quality targets; 6) treat people as the most important resource; 7) adopt life cycle

configuration management; 8) manage and trace requirements; 9) use system-based

are design; 10) ensure data and database interoperability; 11) define and control

interfa 4) inspect

requirements and design; 15) manage testing as a continuous process; and 16) compile

and smoke test frequently. [Ref. 22]

 program recognized that imposing the CMM process on the contractor could not

reap all the benefits without the program office also instituting the SA CMM. By

focusing the project office on standardized process, the program manager was able to turn

around a struggling software development and achieve a successful milestone B decision.

softw

Application Number Size Average Range Example
Domain of Range Productivity Applications

Projects (KSLOC) (SLOC/SM) (SLOC/SM)
Automation 55 25-650 245 120-440 Factory automation
Command & Control 43 35-4,500 225 95-330 Command centers
Data Processing 36 20-780 330 165-500 Business systems
Envrionment/Tools 75 15-1,200 260 143-610 CASE tool, compilers
Military-Airborne 38 20-1,350 105 65-250 Embedded sensors
Military-Ground 52 25-2,125 195 80-300 Combat information center
Military-Missile 14 22-125 85 52-165 Guidance, navigation
Military-Spaceborne 18 15-465 90 45-175 Attitude control system
Scientific 33 28-790 195 130-360 Seismic processing sys.
Telecomunications 48 15-1,800 250 175-440 Digital switches
Trainers/Simulations 24 200-900 224 143-780 Virtual reality sim.
Web 64 10-270 275 190-975 Client/server sites

ces; 12) design twice, code once; 13) assess reuse risks and costs; 1

One of the professionals interviewed stated that Government program offices

should implement the Software Acquisition (SA) CMM within their program. One

ACAT 1

45

The SEI led a group of Government and industry leaders to develop, pilot-test, and plan

the implementation of the SA-CMM. [Ref. 23]

All of the professionals and managers indicated that having an adequately trained

staff is

distance learning over the Internet. [Ref. 32] Acquisition personnel are required to attend

many of these courses to become certified level III in their primary field.

The program manager should ensure that all of the staffs training plans are

current. Personnel should be encouraged to take advantage of DAU sponsored courses.

For example, the software cost estimating class teaches acquisition personnel to develop

 estimates for life cycle management, plan and manage DoD system

acquisi a rformance

tradeof

Training is also required for the sophisticated commercial software estimating

models. The program manager should ensure that cost and technical software personnel

have a thorough understanding of how the model works. It is also imperative that

personnel know how to calibrate the models to maximize their effectiveness.

 critical for a program to have a successful software development. In the past,

program managers were inadequately trained to manage complex software intensive

programs. However, the DoD recognized this deficiency and has been aggressively

educating officers and civilians to mitigate this problem. Therefore, it is recommended

that future program manager should have advanced degrees, preferably in program

management.

Successful implementation of the various plans identified in Paragraph B requires

the staff to be trained in those processes. There are many short courses available from

the Defense Acquisition University (DAU) in the areas of program management,

software acquisition and cost analysis. Several of these courses are available through

and evaluate cost

tions, evalu te and negotiate contract proposals, and analyze cost and pe

fs.

One analyst interviewed reported that the program manager, of a major ACAT 1

program recognized that imposing the CMM process on the contractor could not reap all

the benefits without the program office also instituting the Software Acquisition CMM.

By focusing the project office on standardized processes, he was able to turn around a

struggling software development, and achieve a successful milestone B decision.
46

Implementing any and all of these plans, processes, and procedures will improve the

probability of success for the program.

D. SOFTWARE MAINTAINABLITY AND SUPPORTABILITY
Software maintenance and support is a significant cost driver over the total life of

the program. It is imperative that software developers design software to be reliable,

understandable and modifiable. Improving the initial design will hopefully reduce the

trend where maintenance and support costs are 40-80 percent of the total software life

cycle cost. Figure 12 represents current maintenance and support data for data processing

programs. In both cases the maintenance costs for these programs would be significant.

. [Ref. From: 9]

Figure 12. Support Cost for Data Processing Environments [After: Ref. 9]

It is recommended that modern software estimating tools be used to estimate the

total life cycle cost of the program. However, when comparing results with other models

or against other programs, it important to understand how the models differ on techniques

to estimate total life cycle cost and in particularly what is included in the maintenance

and support cost. A comprehensive list of support activities is provided in Table 11 to

determine what level of support is required for the program

21%

Design Maintenance

Validation

Requirements

13%

Implementation

Other

49%

9%

8%

47

1 Maintainability Requirement for a Maintenance Task Analysis (MTA)

2 FTA, FMECA Requirement for Fault Tree Analysis (FTA) and Failure Modes and Effects

3 Defect Rate Requirements to state a contractual target defect rate per lines of code over
an agreed period including confidence limits

4 Failure Identification Design to provide features that achieve failure detection and location times

5 Failure Snapshot Design to provide features t

and Criticality Analysis (FMECA) to be performed to functional dept

hat achieve failure detection and location times

6 Tool

10 Sup. Policy Constraint Use Study to include what the software must do and not do

11 Support Maint. Policy Support specific maintenance policies and manpower ceilings and skill level
availability to be stated

12 SW Sup. & Maint. Cat. Categories of software support and maintenance to be stated

13 Media Proposed media must: (a) suit the environmental requirements, and (b) be

14 Media Copying Simplify copying and distribution

quirements

18 Stora

handling

s The Requirement must include contractually agreed upon definitions of:
incident, fault, failure, defect, reliability, and failure categories

24 Reso

must be provided

 Kit Provision of User/Maintainers software tool kits to aid failure location

7 Loading and Saving Data Design to allow loading or saving data in specified times

8 Config. Identification User/maintainer able to identify the configuration status (version) without
accompanying documentation

9 Exception Handling Design to allow exception handling to preclude failure conditions from
aborting software during operations

acceptable as a consumable item

15 Media Marking To allow physical and internal marking; safety critical items to be separately
marked

16 Packaging Media packaging to be consumable, reusable, and robust

17 Handling Media to require no special precautions and meet Use Study re

ge Media to require no special precautions or facilities and meet Use Study
requirements

19 Transportation Media and packaging to require no special requirements

20 Training, User User training required to detect failures and invoke exception handling

21 Training, Support Support training required to detect and locate failures and invoke exception

22 Publications User and Support publications will be required

23 Definition

urces Cost estimates must be sought for software maintenance

25 Test Tools Contractor-owned and maintained software test tools and documentation

26 Test Tool Access Access to test tools to be provided to software support personnel

27 Incident/Failure Reporting Incident and failure reporting to be available

Table 11. Software Supportability Checklist [From: Ref. 9]

48

E. SUMMARY
Staffing, training, processes and tools are the keys to improving software

development programs and improving the accuracy of the software cost estimates. For

multi-million dollar programs, the program manager should purchase a couple of modern

estimating tools, and hire a professional consulting firm to develop a customized

enchmarking tool.

representatives

from ea

F. RECOMMENDATIONS FOR FURTHER ANALYSIS
Recommendations for further analysis include: 1) examining the implementation

of the Software Acquisition CMM for Government program offices; 2) investigating

maintenance and support cost to reduce cost; 3) and developing a case study on a

program that is successfully implementing a suite of modern program management,

software development and cost models.

G. VALAUBLE RESOUCES
Some of the more valuable resources that would benefit the program manager

include; The Parametric Estimating Handbook; Joint Industry/Government, Spring 1999,

The Guidelines for Successful Acquisition and Management of Software-Intensive

Sys uisition

Deskbo

b

The program manager should establish a cost IPT that includes

ch of the technical areas of the program. The cost analyst should also participate

in all of the technical IPTs. Because many program offices have small staffs, it may be

necessary to award a contract for a Systems Engineering Technical Assistance (SETA)

support contractor. With SETA support, the cost team can effectively attend all the

meetings, run the cost models and collect data required to calibrate the models.

tems, (GSAM) Version 3.0, May 2000, (both of these are in the Defense Acq

ok CD, March 2002), The Program Manager's Guide for Managing Software, and

the monthly CrossTalk Journals, and the Software Engineering Institute's website.

49

THIS PAGE INTENTIONALLY LEFT BLANK

50

APPENDIX A. INDIVIDUALS INTERVIEWED

Mr. Randy Mills
Cost A

s. Beverly Fuller

The Boeing Company

JLENS

Comanche Project Office

Ms. Martha Spurlock
Software Cost Estimating and Statistics Instructor
Defense Acquisition University
Mid Atlantic Region Fort Lee Center

LTC (ret) Brad Naegle
Graduate School of Business & Public Policy
Naval Postgraduate School

Mr. Jason Wilson
Cost Analysis
Research Development Acquisition Office
Space and Missile Defense Command

nalysis
Research Development Acquisition Office
Space and Missile Defense Command

Ms. Robbie Holcomb
Cost Analysis
Research Development Acquisition Office
Mr. Ed Strange

M
Operations Research Analyst
Program Executive Office, Tactical Missiles

Mr. Gary Fuller
Manager
Future Combat Systems
T&E Test Resources & Facilities

Mr. Ken Shipman
Software Program Manager

 Project Office
Program Executive Office, Air and Missile Defense

Mr. Jerome Olerich
Software Program Manager

Program Executive Office, Aviation

51

52

COL (ret) Dave Matthews
Graduate School of Business & Public Policy
Naval Postgraduate School

APPE DEL
WEBSITES

ostXPert
rt.com/

OII/

esystems.com/

ttp://www.galorath.com/home.shtm

tml

.qsm.com/

NDIX B. SOFTWARE COST ESTIMATING MO

Sage
http://www.seisage.com/sage.htm

C
http://www.costxpe

COCOMO II
http://sunset.usc.edu/research/COCOM

PRICE S
http://www.pric

SEER
h

REVIC and SoftEST
http://sepo.spawar.navy.mil/sepo/estimation.h

SLIM
http://www

53

THIS PAGE INTENTIONALLY LEFT

54

LIST OF REFERENCES

1. Information Resources Management College, National Defense University,
 So re Dragon, by Michel, John, Lt. Col., 1998

. The Standish Group, T23E-T10E, Standish Group Report, 1995

tware Engineering Economics, Prentice Hall, Englewood
liffs, NJ, 1981

t of Defense Directive (DoDD) 5000.2-R
efense Acquisition, Washington, D.C., 1999

f Defense Memorandum, Subject: Defense Acquisition,
ct. 2002

nse, Interim Defense Acquisition Guidebook, Oct.

002

d, Parametric Estimating Handbook
oint Industry/Government, Spring 1991

 Defense Information Officer Memorandum, Use of the Ada

rogramming Language, April 1997

. Department of the Air Force, Software Technology Support Center, Guidelines
r Successful Acquisition and Management of Software-Intensive Systems, (GSAM)
ersion 3.0, May 2000

0. Pressman, Roger, Software Engineering A Practitioner's Approach, McGraw Hill,
oston, MA, 2001

1. Department of Defense, The Strategic Defense Initiative Organization, Software
ost Estimating: Life Cycle, Models, and Techniques Training Manual, April 1993

2. Boehm, Barry, and others Software Cost Estimation With COCOMO II, Prentice
all, Upper Saddle River, NJ, 2000

3. Software Engineering Institute, CMU/SEI-92-TR-19, ESC-TR-92-017, Software
easurement for DoD Systems: Recommended for Initial Core Measures, Carleton,
nita, and others, 1992

4. Joint Single Integrated Air Picture, Systems Engineering Task Force, Cost Benefit
nalysis Questionnaire, adapted from CostXpert Model, 2002

Slaying the ftwa

2

3. Boehm, Barry, Sof
C

4. Department of Defense, Departmen
D

5. The Deputy Secretary o
O

6. The Deputy Secretary of Defe
2

7. Defense Contract Management Comman
J

8. Department of
P

9
fo
V

1
B

1
C

1
H

1
M
A

1
A

55

http://www.qsm.com/

15. REVIC, Software Cost Estimating Model User's Manual, ver. 9, 1991

6. SEER Quick Reference Guide, Version 1.31, Galorath Associates, Inc., Los
ngeles, CA, 1992

7. Price S Estimating Cost and Schedule Guide, 1st ed., Price Systems, L.L.C., Mt.
aurel, NJ, 1998

8. DoD 5000.4-M, Guidelines for the Preparation and Maintenance of a Cost
nalysis Requirements Document (CARD), 1992

9. Dean, Joe, "Software Models What Model is Right for Me?," brief presented at
oftware Engineering Institute Conference, 2000

0. Appleyard, James, Project Management Resources for the Program Manager,
ttp://www.projectmagazine.com/sept01/costx1.html, 10 Dec. 2002

1. Ramgolam, Rakhee, A Guide to Selecting Software Metrics for the Acqusisition of
eapon Systems, Master's Thesis, Naval Postgraduate School, Monterey, CA,

eptember 2001

22. Department of D naging Software, Draft
0.6, June 2001

23. Software Engineering Institute, Software Acquisition Capability Maturity Model,

http://www.sei.cmu.edu/arm/SA-CMM.html, 10 December, 2002

24. Jones, Capers, "Software Cost Estimation in 2002", Crosstalk, The Journal of
Defense Software Engineering, Vol. 15 No.6, June 2002

25. Stark, George, and others, An Examination of the Effects of Requirements
Changes on Software Maintenance Releases, http://members.aol.com/GEShome/
ibelieve/jsmregres.PDF, 7 December, 2002

26. Puttman, Lawrence; and Myers, Ware, "Control the Software Beast With Metrics-
Based Management", Crosstalk, The Journal of Defense Software Engineering, Vol. 15
No.8, August 2002

27. Department of Defense, Ada 95 Adoption Handbook; A Guide to Investigating
Ada 95; Ver. 1.2, September, 1995

28. Clark, Brad, "Quantifying the Effects on Effort of Process Improvement." IEEE
Software Nov./Dec. 2000

1
A

1
L

1
A

1
S

2
h

2
W
S

efense, Program Manager's Guide for Ma

56

29. Diaz , Mark; King, J , Productivity, Rework, and
the Bottom Line", Crosstalk, The Journal of Defense Software Engineering, Vol. 15
No.3, March 2002

Crosstalk, The Journal of
Defense Software Engineering, Vol. 15 No.3, March 2002

31. eneral Accounting Office, Air Traffic Control: Timely Completion of FAA's

1998

.pdf8, December 15, 2002

eff, "How CMM Impacts Quality

30. Reifer, Donald, "Let the Numbers Do the Talking",

G

Standard Terminal Automation Replacement System Software Is at Risk, GAO/AIMD-
98-41R, January

32. Defense Acquisition University (DAU) Website, Course Catalog,
http://www.dau.mil/ catalog/ cat2003/Chapter4

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

 Monterey, CA

. Mr. William C. Reeves
 U.S. Army Space and Missile Defense Command
 Huntsville, AL

. Mr. Richard H. Brown
 U.S. Army Space and Missile Defense Command
 Huntsville, AL

. Dr. Latika Becker
 U.S. Army Space and Missile Defense Command
 Huntsville, AL

3. Mr. Brad Naegle
 Naval Postgraduate School

4

5

6

59

	I.INTRODUCTION
	A.PURPOSE
	B.BACKGROUND
	C.SCOPE
	D.RESEARCH QUESTIONS
	1.Primary Research Question
	2.Secondary Research Questions

	E.METHODOLOGY
	F.ORGANIZATION
	G.BENEFITS OF THE ANALYSIS

	II.METHODOLOGIES, MODELS AND PROCESSESS
	A.PRIMARY SOFTWARE DEVELOPMENT METHODOLGIES
	1.Waterfall/Traditional
	2.Evolutionary Development
	3.Incremental Development
	4.Prototyping Development
	5.Spiral Development
	6.Object-Oriented Development

	B.PRIMARY METHODS TO ESTIMATE SOFTWARE COSTS
	1.Analogy
	2.Parametric Estimating
	3.Bottoms-up Approach
	4.Engineering Judgment

	C.SOFTWARE COST ESTIMATE PROCESS
	1.Design Baseline
	2.Software Size
	3. Environmental Inputs
	4.Software Baseline Cost Estimate

	D.SOFTWARE COST ESTIMATING MODELS

	III.DATA TO BE ANALYZED
	A.REQUIREMENTS
	1.Interviews
	2.Program Data

	B.SCHEDULE
	1.Interviews
	2.Program Data

	C.PROGRAM PLANNING
	1.Interviews
	2.Program Data

	D.SOFTWARE MAINTAINANCE AND SUPPORTABILITY
	1.Interviews
	2.Program Data

	E.DATA SUMMARY

	IV.ANALYSIS OF DATA
	A.REQUIREMENTS ANALYSIS
	1.Requirements Definition
	2.SLOC and Function Points Estimates
	3.Advanced Technology Impact
	4.User Involvement
	5.Requirements Development Framework
	6.Budget Cuts and Politics
	7.Improper Assumptions

	B.SCHEDULE REALISM
	1.Unrealistic Schedules
	2.Exaggerated Productivity Rates
	3.Backing into Schedules

	C.INITIAL PROGRAMMING PLANNING
	1.Poor Planning and Processes
	2.Staffing and Training Problems
	3.Reuse and COTS

	D.SOFTWARE MAINTENACNE AND SUPPORTABILITY
	1.Initial Unstable Requirements
	2.Initial Design
	3.Testing Requirements

	E.DATA ANALYSIS SUMMARY

	V.CONCLUSIONS AND RECOMMENDATIONS
	A.REQUIREMENTS ANALYSIS STABILITY
	B.SCHEDULE REALISM
	C.PROGRAMMING AND PLANNING
	D.SOFTWARE MAINTAINABLITY AND SUPPORTABILITY
	E.SUMMARY
	F.RECOMMENDATIONS FOR FURTHER ANALYSIS
	G.VALAUBLE RESOUCES

	APPENDIX A.INDIVIDUALS INTERVIEWED
	APPENDIX B.SOFTWARE COST ESTIMATING MODEL WEBSITES
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

